miércoles, 24 de abril de 2019

Cirugía maxilofacial e impresión 3D: ¿Cuánto pagarías por un metro de cuerda?


Si yo les preguntase cuánto pagarían por un metro de cuerda, posiblemente coincidirían en pagar un precio relativamente reducido: Al fin y al cabo, es un puñetero metro de cuerda, que maldito sea el uso que le vamos a dar.


Ahora bien: ¿Cuánto pagarían por un metro más de cuerda... si estuvieran a punto de perder la vida con el agua hasta el cuello? ¿Verdad que ya están dispuestos a pagar mucho más? Quédense con esta idea y entenderán mejor el relato que viene a continuación.


Antes de la Impresión 3D, los cirujanos maxilofaciales disponían tan sólo de imágenes en 2D obtenidas mediante Rayos X, que pretendían representar de la mejor manera posible un objeto 3D tan complicado como son los huesos y tejidos de la cara. En esa época, la fase de planificación quirúrgica era completamente artesanal, y se basaba en la capacidad del cirujano para interpretar las radiografías. Para colmo, existían una serie de variables ajenas al control del cirujano, que podían dificultar en mayor o menor medida la calidad visual de las imágenes obtenidas.


Si la calidad visual de la radiografía era insuficiente, existía siempre el riesgo de que se produjeran imprecisiones en la percepción de la realidad, riesgo que podía ser especialmente grave en casos complejos, donde la capacidad de interpretación del cirujano era al fin la clave del éxito... o del fracaso.


Con el advenimiento del TAC (Tomografía Axial Computerizada) se facilitó la visualización espacial de las estructuras oseas del paciente, pero el cirujano seguía enfrentándose a una imagen virtual. Mejor que lo anterior, pero insuficiente para asegurar el éxito.


Ahora bien, desde hace relativamente pocos años el panorama se ha despejado: ya es posible ensayar complicadas cirugías antes de realizarlas, así como explicar al paciente cuál será el procedimiento a seguir. Básicamente, el flujo de trabajo es tan simple como obtener Imágenes 3D, e imprimirlas en 3D. Con los modelos en la mano, el siguiente paso es ensayar el procedimiento quirúrgico.


Evidentemente, lo que vale cuesta, y lo que cuesta, vale: Incorporar la Impresión 3D requiere una inversión elevada, pero sin duda merece la pena si queremos reducir el tiempo de cada intervención, disminuir los costes globales quirúrgicos, aportar mayor seguridad al cirujano y al paciente, y anticiparnos a posibles dificultades y complicaciones quirúrgicas: A veces, una complicación inesperada puede alargar notablemente el procedimiento, lo cual puede resultar especialmente grave... e incluso fatal, cuando se trabaja sobre un paciente bajo anestesia general. En esos casos, ¿Cuánto pagaría el cirujano por una hora menos de intervención... que evitara la muerte del paciente?


martes, 23 de abril de 2019

3D Printing in FESPA


Duncan McOwan, FESPA event manager, has commented: "Visitors to the FESPA exhibitions are continually seeking to increase their knowledge of the sector and find inspiration for new business growth opportunities and, thanks to the wide variety of seminars and round tables that FESPA offer, they will have an extraordinary opportunity to achieve just that. "

The FESPA conferences program includes 38 individual sessions, and 3D Printing will stand out among them, as it has been confirmed the presence of Dominik Rietzel, head of the non-metallic Additive Manufacturing department of the BMW Group, who will present his vision about the future of 3D Printing.

lunes, 22 de abril de 2019

Design Faster with Form Families and METHOD


Join industrial designers Reid Schlegel and James Connors LIVE as they present their Form Families methodology for quickly generating form studies to be used in sketching and 3D Printing early in the design iteration process.

Using a watering can design as an example, Reid and James will be sketching LIVE to demonstrate how you can create form studies FAST to accelerate your product development cycles.

Hurry and register today—this is one event you don’t want to miss!

Why you should attend:

  • Watch Reid and James demonstrate their sketching techniques — LIVE!
  • Learn how Form Families work and how they can speed up your workflow
  • Learn how 3D Printing is critical to better understanding your sketches
  • Why METHOD is ideal for iterating your design ideas—fast!
  • PLUS: Download the Form Families Guide and start improving your own product development process immediately after.

viernes, 19 de abril de 2019

MJF for ISR enclosures: Aurea Avionics


Aurea Avionics design high-precision ISR systems to help protect strategic positions and provide protection during military missions abroad.

The Seeker UAS is its most advanced ISR platform, designed and evolved to meet the critical requirements expected in demanding environments: With virtually zero infrastructure needed to deploy the system, its dual EO/IR stabilized payload delivers real-time imaginery, making the Seeker a complete light-weight ISR solution.

¿Why 3D?

Aurea Avionics used 3D Printing technologies to accelerate prototyping processes: 3D Printing was the fastest technology available to produce the first designs and UAVs, resulting in the ability to test products on the field faster than using other manufacturing technologies.

¿Why HP MJF?

At the beginning, Aurea Avionics used FDM technology to produce the first prototypes, but the parts produced were extremely weak in terms of mechanical properties and did not last as long as expected during the drone’s landing. HP MJF increased mechanical properties while decreasing the need for spare parts.


Manufacturing of UAVs with MJF: Aldora


ALDORA is an UAV (Unmanned Aerial Vehicle) developed by a team from Universitat Politecnica de Catalunya (UPC) in Barcelona.

After a long period of construction feasibility problems, HP offered UPC engineers the opportunity to print the UAV, which meant a faster way to iterate the initial design.

Working together with HP and the Nacar design studio, UPC engineers managed to design a structure that could be printed in its entirety, using the 3D printing technology offered by HP.

Due to the modular design of the UAV, 3D printing offered the option to individually dimension and shape each joint, taking into account the needs of each one.

Regarding the challenges, the main challenge for the Aldora project was to make a large-scale UAV that was light, rigid and resistant. In addition, they needed to convert the maximum internal space of the UAV into a useful volume without jeopardizing its integrity.

Regarding the manufacturing technology and materials, initially wood and carbon fiber would be used since these materials are light and resistant. For the outer shape they thought about milling expanded polystyrene, but due to the small thickness of the profiles designed to make the flight more efficient, it was impossible to mill the material.

The only way to achieve the shape they were looking for, was making molds, what it was a solution as good as expensive. In addition, the number of hours they had to invest were not viable considering that for each iteration they had to create a new mold. and because of this they decided to discard this idea and start to think "out of the box", but more concretely in Additive Manufacturing.

Structural rigidity, precision for the aerodynamic surface and maneuverability in internal areas of difficult access were three maxims that the HP 3D Multi Jet Fusion technology offered to the Aldora team, and this technology made possible the creation of a remarkable UAV, in which 90% of the parts were been additively manufactured in a HP MJF 3D Printer.

lunes, 8 de abril de 2019

MakerBot launches Method 3D Printer


“In an age of disruption, businesses are under pressure to innovate and bring products to market faster. Current desktop 3D printers derive their DNA from hobbyist 3D printers and are insufficient for many applications in the professional segment,” says Nadav Goshen, MakerBot CEO. “We believe that Method is the next step in helping organizations adopt 3D printing on a larger scale. Method provides a breakthrough in 3D printing that enables industrial designers and mechanical engineers to innovate faster and become more agile. It’s built for professionals who need immediate access to a 3D printer that can deliver industrial performance to accelerate their design cycles. Method was developed to bring industrial technologies into an accessible platform, breaking the price/performance barrier, and redefining rapid prototyping in the process,”.



Industrial technologies on the Method 3D Printer include a Circulating Heated Chamber, Dual-Performance Extruders, Precision PVA Water Soluble Supports, Dry-Sealed Material Bays, and an Ultra-Rigid Metal Frame. The Method also includes built-in sensors and automation features that “are designed to provide users with a seamless experience.” The printer’s industrial features control the 3D Printing Process to deliver “a high level of precision, reliability and dimensional accuracy at an accessible price.”


Method is designed to deliver industrial reliability and precision by carefully controlling every aspect of the 3D Print environment, resulting in repeatable and consistent parts with ± 0.2 mm dimensional accuracy as well as vertical layer uniformity and cylindricity. Until now, this level of precision has been limited to industrial-grade 3D printers. The dual extrusion system found in Method combined with water-soluble PVA provides a superior surface finish, and enables unlimited design freedom and unrestricted geometries, such as complex overhangs without scarring.